skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 6, 2027
  2. Free, publicly-accessible full text available May 4, 2027
  3. Free, publicly-accessible full text available April 29, 2027
  4. Free, publicly-accessible full text available March 1, 2027
  5. Free, publicly-accessible full text available January 1, 2027
  6. Free, publicly-accessible full text available February 1, 2027
  7. Free, publicly-accessible full text available December 12, 2026
  8. Whereas recruitment success for many fisheries depends on coincident timing of larvae with abundance peaks of their prey, less can be more in the tropical/subtropical spawning areas of bluefin tunas if lower but steady food resources are offset by reduced larval vulnerability to pelagic predators. To understand larval habitat characteristics for Southern Bluefin Tuna (SBT), we quantified microbial community carbon flows based on growth and grazing rates from depth profiles of dilution incubations and carbon biomass assessments from microscopy and flow cytometry (FCM) during their peak spawning off NW Australia (Indian Ocean) in February 2022. Two Chla-based estimates of phytoplankton production gave differing offsets due to cycling or mixotrophy, exceeding 14C net community production on average (677 ± 98 versus 447 ± 43 mg C m−2 d−1). Productivity was higher than in the Gulf of Mexico spawning area for Atlantic Bluefin Tuna but less than similar studies of oceanic upwelling regions. Microzooplankton grazing averaged 482 ± 63 mg C m−2 d−1 (71 ± 13 % of production). Two measurement variables for Prochlorococcus gave average production and grazing rates of 282 ± 36 and 248 ± 32 mg C m−2 d−1 (86 ± 6 % grazed). Prochlorococcus comprised almost half of production and grazing fluxes in the upper (0–25 m) euphotic zone where SBT larvae reside. Prochlorococcus declined and eukaryotic phytoplankton and heterotrophic bacteria increased in relative importance in the lower euphotic zone. These results describe relatively classic open-ocean oligotrophic conditions as the food web base for nutritional flows to SBT larvae. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  9. Abstract BackgroundPrescribed fire is an essential tool employed by natural resource managers to serve ecological and fuel treatment objectives of fire management. However, limited operational resources, environmental conditions, and competing goals result in a finite number of burn days, which need to be allocated toward maximizing the overall benefits attainable with fire management. Burn prioritization models must balance multiple management objectives at landscape scales, often providing coarse resolution information. We developed a decision-support framework and a burn prioritization model for wetlands and wildland-urban interfaces using high-resolution mapping in Everglades National Park (Florida, USA). The model included criteria relevant to the conservation of plant communities, the protection of endangered faunal species, the ability to safely contain fires and minimize emissions harmful to the public, the protection of cultural, archeological, and recreational resources, and the control of invasive plant species. A geographic information system was used to integrate the multiple factors affecting fire management into a single spatially and temporally explicit management model, which provided a quantitative computations-alternative to decision making that is usually based on qualitative assessments. ResultsOur model outputs were 50-m resolution grid maps showing burn prioritization scores for each pixel. During the 50 years of simulated burn unit prioritization used for model evaluation, the mean burned surface corresponded to 256 ± 160 km2 y−1, which is 12% of the total area within Everglades National Park eligible for prescribed fires. Mean predicted fire return intervals (FRIs) varied among ecosystem types: marshes (9.9 ± 1.7 years), prairies (7.3 ± 1.9 years), and pine rocklands (4.0 ± 0.7 years). Mean predicted FRIs also varied among the critical habitats for species of special concern:Ammodramus maritimus mirabilis(7.4 ± 1.5 years),Anaea troglodyta floridalisandStrymon acis bartramibutterflies (3.9 ± 0.2 years), andEumops floridanus(6.5 ± 2.9 years). While mean predicted fire return intervals accurately fit conservation objectives, baseline fire return intervals, calculated using the last 20 years of data, did not. Fire intensity and patchiness potential indices were estimated to further support fire management. ConclusionsBy performing finer-scale spatial computations, our burn prioritization model can support diverse fire regimes across large wetland landscape such as Everglades National Park. Our model integrates spatial variability in ecosystem types and habitats of endangered species, while satisfying the need to contain fires and protect cultural heritage and infrastructure. Burn prioritization models can allow the achievement of target fire return intervals for higher-priority conservation objectives, while also considering finer-scale fire characteristics, such as patchiness, seasonality, intensity, and severity. Decision-support frameworks and higher-resolution models are needed for managing landscape-scale complexity of fires given rapid environmental changes. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  10. Hyper-extended, magma-poor rifted margins are characterized by thinned continental crust, exhumed subcontinental mantle, and limited volcanism. The timing of exhumation, particularly mantle exhumation, during the formation of hyper-extended margins has key implications for our geodynamic understanding of the transition from continental breakup to seafloor spreading and the relationship between magmatism, lithospheric extension, and mid-ocean ridge development. We use zircon and apatite from rifted igneous intrusions and lower continental crustal blocks within the exhumed mantle section of the Iberia-Newfoundland margin to track the cooling of these rocks below ~200°C, with implications for fault timing and fluid-rock interactions. Zircon (U-Th)/He data from 8 core samples (from 4 drill holes) exhibit a general younging trend from east to west during the Late Cretaceous, consistent with exhumation driven by a lithosphere-scale, westward-dipping detachment fault. Of 10 apatite (U-Th)/He samples (from 7 drill holes), 5 record Cretaceous cooling, while the remaining 5 indicate Oligo-Miocene cooling, with no clear geographic pattern distinguishing the two populations. Inverse thermal history modeling will be applied to constrain the thermal evolution of the lithosphere during hyperextension. These models can indirectly constrain the timing at which the lithosphere entered the thermal window conducive to serpentinization and ophicalcite formation with implications for lithospheric rheology, thermal structure, and the potential habitability of subsurface environments for ancient microbial life. 
    more » « less
    Free, publicly-accessible full text available December 16, 2026